
BACKTALK

February 2009 www.stsc.hill.af.mil 31

Here I am, in yet another airport, writing a BackTalk col-
umn. The theme this month? Software and systems integra-

tion. And, of course, this reminds me of story.
I was lucky—my parents bought me a brand new 1973 Chevy

Impala right out of high school1. The 1973 Chevy Impala,
although a great car, came with a very basic AM/FM radio.

Keeping in touch with the times, I wanted to be “cool” and
install a cassette player (contrary to stories, I was not old enough to
have wanted an eight-track player). I saved up my dollars, and even-
tually went to a local auto parts shop and bought an in-dash AM/
FM/cassette radio. It came with a complete book of instructions.

Really, how hard could it be? Well, the first instruction was to
remove the old radio, and provided a helpful hint that perhaps drop-
ping the dashboard was the way to go. So, armed with a set of bor-
rowed-from-my-dad screwdrivers, I got to work. Eventually, stuff
started to come off and I was able to see the mounting brackets
for the old radio. Carefully, I removed it and isolated the wires.

I remember that there were about eight wires, almost all of
them black. A few had some color-coded tags, but some did not.
There was a socket in the back of the radio, but it had no label-
ing, and several of the wires had no obvious way to disconnect—
they simply disappeared into a hole in the dashboard.

Surely, I thought, the new radio instructions would explain.
As I read the instructions, I noted that the new radio had nine
(not eight!) wires, each color-coded. I spent the better part of the
day trying to match the old and new wires. I blew several fuses. I
never could get one speaker to work. I ended up draining the bat-
tery, and my dad did not have a battery charger. I ended up rolling
the car back, and using dad’s car to jump mine.

Sundown came, and I finally gave up. Luckily, I had marked the
old wires well, and I was able to reconnect the old radio, reinstall
the dash2, and return the new radio for a “full and prompt refund.”

Years later, I bought a car3 that came with only an AM/FM
radio. I asked the dealer how much it cost to install an AM/FM
radio with a six-disc CD player. The answer was less than $300,
so I said “go for it!” When I was done with the hour-long “sign-
ing your life away” paperwork, I asked when I could bring back
the car to change out the radio. The salesman laughed, and said
“It’s done already!” I was told (and then shown) that the new cars
had a standard socket for all of their radios, and that the replace-
ment was as simple as “Use special tool to remove old radio,
insert new radio.” Total time, five minutes!

Standardization. Agreement on interfaces. Planning the inter-
faces ahead of time. Testing them to make sure they work.
Sounds easy, but it’s not. You need a 50,000-foot view to see how
the system will integrate. Programmers are too low on the food
chain to see it. Most designers only understand a single system.
True system architects are hard to find.

You see, integration takes time and planning and needs to be
done before you start building the low-level modules of a system.
Many large systems have a chief engineer, but his or her job is to
understand the complex technical issues. You still need a chief
architect to see how everything needs to fit together, and then
design the system to work.

I have always taught that there are four phases of design:
architecture, data, interface, and module. Most developers focus
on the module design because it’s understandable at a low level.
Most software engineering processes and tools help with the data
design. And, if you are using any type of CASE (Computer-

Assisted Software Engineering), the interfaces are controlled.
However, the really big picture is the architecture. I do not know
of any really good tools that automate the overall systems and
software integration. Maybe it’s time for a CASSI (Computer-
Assisted Software and Systems Integration) tool4 to help create,
design, manage, and help identify problem areas.

Which brings me back to my current wait in the airport. I am
trying to get home from Seattle to Albuquerque. My first leg to
Salt Lake City is already 90 minutes late. Since my layover is only
an hour, I am guaranteed to miss my connection. I called the air-
line to rebook but was told I can’t because their computers still
show the flight out of Seattle as “on time.” I point out that since
I am calling (and am still on the ground in Seattle), there is no
way it’s “on time.” The very nice and apologetic flight agent
agrees, but says that until somebody officially lists the flight as
“delayed,” the computer “thinks” things are OK, and I cannot
rebook a new connection for free.

Integration is hard. You need to plan for it. You need a system
architect to help with the big picture, and plan the interfaces. You
need a system architect to visualize, create, and then control the
big picture—if you don’t have a high-level integration plan, the
probability of the software integrating properly is close to zero.
And, like the airline, when problems occur, you need to recognize
them early—and take remedial action. Don’t keep listing your
program as “on time” when you know there’s a problem. It will
only get worse.

—David A. Cook, Ph.D.
Principal Member of the Technical Staff,

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Notes
1. Let me point out that I had a choice: go to college car-less, or

get a car and go to college locally. I picked the car. I joined the
Air Force within a year, so I obviously made the right choice.

2. Although, truth be told, until I got rid of the car in 1986, the
speedometer cable rattled and occasionally the fuse to the
dash light blew out. I am sure this was a normal occurrence,
and had nothing to do with my reinstallation.

3. OK, it was a minivan, but driving a minivan does not automat-
ically label you as “middle-aged.”

4. And I can find no reference to this on the Internet, so if this
becomes popular in the future, I’ve coined a new term!

Two, Four, Six, Eight!
Software and Systems – Integrate!

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

